Contact angles of surfactant solutions on heterogeneous surfaces.
نویسندگان
چکیده
Using Gibbs' adsorption equation and a literature isotherm, a new general model to predict the contact angle of surfactant solutions on (smooth or rough) chemically heterogeneous surfaces is constructed based on the Cassie equation. The model allows for adsorption at the liquid-vapor, solid-liquid, and solid-vapor interfaces. Solid-vapor adsorption is allowed in order to model the autophobic effect on hydrophilic surfaces. Using representative values for the coefficients which describe adsorption at each interface, model predictions for contact angles as a function of f parameters (area fractions) and surfactant concentration are made for heterogeneous surfaces made up of different materials. On smooth surfaces, the f parameters serve as weighting factors determining how to combine the effects of surfactant adsorption on each material to predict the behavior on the heterogeneous surface. Due to the non-linear nature of the model, the inclusion of a small amount of hydrophobic material has a greater effect on a predominantly hydrophilic material than vice versa, explaining the result seen in literature that a small amount of hydrophobic contamination (such as oil) significantly increases contact angle on a hydrophilic surface. The fact that even a small amount of heterogeneity can greatly change experimental results could lead to incorrect experimental conclusions about surfactant adsorption if a surface were wrongly assumed to be homogeneous. Model predictions rapidly become more complex as the number of differently wettable materials present on the surface increases. Also, an approximately equal weighting of different materials generally leads to more complex behaviors compared to heterogeneous surfaces composed largely of a single material. Rough heterogeneous surfaces follow previous results for surfactant wetting of rough homogeneous surfaces, leading to an amplification/attenuation of surfactant effects for penetrated/unpenetrated wetting, and further increasing the complexity of predictions. These potential complexities point to the importance of characterizing the heterogeneities of any surface under consideration. With proper characterization, the model described in this paper will allow for prediction of contact angles on all types of heterogeneous surfaces, and design of surfaces for specific interactions with surfactant solutions.
منابع مشابه
Thermodynamic modeling of contact angles on rough, heterogeneous surfaces.
Theoretical modelling for contact angle hysteresis carried out to date has been mostly limited to several idealized surface configurations, either rough or heterogeneous surfaces. This paper presents a preliminary study on the thermodynamics of contact angles on rough and heterogeneous surfaces by employing the principle of minimum free energy and the concept of liquid front. Based on a two-dim...
متن کاملSurface Modification of Silicone Rubber Membrane by Microwave Discharge to Improve Biocompatibility
Wetability of biocompatible polymers can be improved by plasma surface modification. The purpose of this study was to surface modify an experimental poly (dimethylsiloxane) rubber (PDMS) material in order to improve its wetability and biocompatibility. Surface properties of the PDMS were characterized using contact angles measurement for wetability analysis. Samples of experimental silico...
متن کاملA Laboratory Investigation into Wettability Alteration of Carbonate Rock by Surfactants: The Effect of Salinity, pH, and Surfactant Concentration
Wettability alteration is an important method for increasing oil recovery from oil-wet carbonate reservoirs. Chemical agents like surfactants are known as wettability modifiers in carbonate systems. Oil can be recovered from initially oil-wet carbonate reservoirs by wettability alteration from oil-wet to water-wet condition with adding dilute surfactant and electrolyte solutions. This paper inv...
متن کاملEvaporation kinetics of surfactant solution droplets on rice (Oryza sativa) leaves
The dynamics of evaporating sessile droplets on hydrophilic or hydrophobic surfaces is widely studied, and many models for these processes have been developed based on experimental evidence. However, few research has been explored on the evaporation of sessile droplets of surfactant or pesticide solutions on target crop leaves. Thus, in this paper the impact of surfactant concentrations on cont...
متن کاملDynamic contact angles on PTFE surface by aqueous surfactant solution in the absence and presence of electrolytes.
This study presents the experimental results on dynamic contact angles of pure surfactants and surfactants with electrolyte solutions on PTFE (Teflon) surface. Dynamic advancing (theta(A)) and receding (theta(R)) contact angles measurements by the Wilhelmy plate technique were carried out for aqueous solution of three different surfactants Triton X-100 (TX-100), sodium dodecylbenzene sulfonate ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Physical chemistry chemical physics : PCCP
دوره 17 8 شماره
صفحات -
تاریخ انتشار 2015